top of page

Supramolecular self-assembly is largely responsible for functional complexity in living systems. We have investigated peptide self-assembly to discern mechanisms of cell/bacteria killing and to create materials with attributes prevalent in biological systems. We are interested in investigating new peptides and peptide self-assembled materials targeting specific bacteria to modify interfaces, and thus prevent infections.

Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections Acta Biomaterialia (2022)  d.o.i.: 10.1016/j.actbio.2021. Z. Ye , T. Sang , K. Li, N.G. Fischer, I. Mutreja, C. Echeverría, D. Kumar, Z. Tang, C. Aparicio.

Unraveling dominant surface physicochemistry to build antimicrobial peptide coatings with supramolecular amphiphiles Nanoscale (2020)12(40):20767-20775. Z Ye, A. Kobe, T. Sang, C. Aparicio. 

Dual self-assembled nanostructure from intrinsically disordered protein polymers with LCST behavior and antimicrobial peptides Biomacromolecules (2020) 21(10):4043-4052. S. Acosta, Z. Ye, Aparicio C, M. Alonso,  J.C. Rodriguez-Cabello

Self-assembly dynamics and Antimicrobial Activity of all L- and D-enantiomers of a Designer Peptide. Nanoscale (2019) 11: 266-275. Z. Ye, X. Zhu, S. Acosta, D. Kumar, T. Sang, C. Aparicio.

Dentin Priming with Amphipathic Antimicrobial Peptides Journal of Dental Research (2019) 98(10):1112-1121. D.G. Moussa, J.A. Kirihara, Z. Ye, N.G. Fischer, J. Khot, B.A. Witthuhn, C. Aparicio.

bottom of page